
UNCLASSIFIED

AD 419063

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When government or other dramings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any vay
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



D1 .82-0293

1~o17 zBOEI 11
SCIENTIFIC
R ESEARCH

BOE I NGLABORA T ORIES

6 ~ Tchebycheff Approximation and Related

Extremal Problems

. , OCTS 163 *'

E. W. Cheney

A. A. Goldstein

Mathematics Research

August 1963



D1-82-0293

TCHEBYCHEFF APPROXIMATION AND RELATED

EXTREMAL PROBLEMS

by

E. W. Cheney

University of California, Los Angeles

and

A. A. Goldstein

University of Texas

Visiting Staff Members

Summer 1963

Mathematical Note No. 318

Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

August 1963



One of the principal maneuvers available for proving existence

theorems is to establish that the desired point is where a continuous

real-valued function achieves an extremum on a compact set. If the

extremum sought is an infimum, then the functional need only be lower

semicontinuous. We may take as the definition of this term for a

functional cp that each set of the form Ix : tp(x) < c] is closed.

The crux of an existence proof along these lines would then be the

definition of an appropriate topology in which the functional is lower

semicontinuous and the set compact. This idea is applied here to

several problems involving convex functionals. Applications to

Tchebycheff approximation and to control theory are cited. Several

theorems dealing with the characterization of extremal points are given

as well.

Our terminology follows that of the treatise of Dunford and

Schwartz [1) except that we retain the older terms weak and weak*

topology. The weak topology in a locally convex space E is defined

by saying that a net x converges to x if and only if <f,xa> - (f,x>

for all feE*. Here E* denotes the space of all continuous linear

functionals on E. The weak* topology in E* is defined by saying that

a net fc converges to f if and only if <fa,x> - <f,x) for all

xCE.

1l, Theorem. A continuous convex functional defined on an

open convex set in a linear topological space is the supremum

of a family of continuous affine functions.
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Proof. Let tp be such a functional, G its domain, E the linear

space, and R the reals. In FAR consider the upper graph set of p:

K = {(x,%) : xeG, XcR, X, > cp(x)).

Since c is upper semicontinuous, K has an interior; since cp is

convex, K is convex; since K is lower semicontinuous, K is closed.

By [2, page 72, Corollary], K is the intersection of a family of half

spaces H , say

H = {(x,X) : fa(x) - caX <da)

where a is from some index set A. We note first that c > 0, for

in the contrary case, with fixed x and large X, (x,X) will lie in

K but not in Ha. Let A = acA : c > 0), and let x be arbitrary

in G. Then the inequality X > cp(x) implies the inequalities

fQ(x) - c aX < d for all acA . Conversely, if f a(x) - c aX < d for

all acA+ while X < cp(x), then (x,X) 4 K and consequently

f x) - c > d for some PeA. Clearly pie . Thus cP = 0. Hence

fP(x) > d . But (x,c(x))eK and so f Px) < d, a contradiction. We

have therefore shown that

> cp(x) f (x) - c X < d (acA)

Hence :(x) sup4 c
1 [f (x) - dJ.I

§2. Definition. The c-level set of a functional r is the

set Ix : CP(x) < c].

3 Lemma. A lower semicontinuous functional defined on a locally
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convex space and having convex level sets is weakly lower

semicontinuous.

Proof. Each set Mc = px : c(x) < c) is closed and convex, hence by El,

page 422, theorem 13] weakly closed. Thus cp is weakly lower semicontinuous.I

§4, Lemma. A convex functional defined on a linear topological

space and having two bounded non-void level sets has all of its

level sets bounded.

Proof. Let cp be such a functional. By hypothesis there exists a

number a such that the set S = (x : cp(x) < a] is bounded and non-void

and contains a point x0  with y(xo) < a. Let b = a - cp(x 0 ). The

functional C(x) = cp(x) - cp(x ) is convex and satisfies (xo) = 0.

Furthermore S = (x : O(x) < b]. Let M be an arbitrary level set of

, say M = (x :O(x)<5 c). If c < b then M CS and M is bounded.

If c > b then 0 < - < 1. Hence for arbitrary xeM,
c

§01 x + c ) < c §(x) < b
c c 0 -c -

Thus the point x + c-b x lies in S, and x lies in a set of the
c c 0

form Xx + I±S, with X and L independent of x.I

Remark. It was pointed out by R. T. Rockafellar that the conclusion

requires only one bounded non-void level set in a finite-dimensional

setting. An example due to him showing the necessity of two bounded level
x 2

sets in general is an follows: In L2  let c(x) = E(-) . Then
n

[x : p(x) S 0 = (0), but (x : qp(x) < 1) contains, for each n, the
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point (O,...,O,n,O,...) having n for its nt h coordinate.

§, Definition. Given a real-valued function cp defined on

a set M, the cp-topology of M has for a subbase all sets

of the form M = Cx : (P(x) > c).

§6, Theorem. cp achieves its infimum on M if and only if

M is compact in the cp-topology.

Proof. Evidently tp is lower semicontinuous in the cp-topology. Hence

if M is compact cp will achieve its infimum. For the converse, suppose

that cp achieves its infimum - at xo. We show M compact. By

Alexander's theorem [3, page 139] it suffices to show that any cover by

subbase elements has a finite subcover. Suppose then that M C UC(M XeAl

where A is a set of reals. We will be finished if there is a X eA
0

such that X0 < i, for the M C: . If no such X exists then
000

X > ii for all XCA. But then c(x o) > i, a contradiction.

§7, Existence Theorem. Let E be a reflexive Banach Space, w

a lower semicontinuous functional on E having bounded convex

level sets, and K a closed convex set in E. Then cp achieves

its infimum on K.

Proof. By §3, cp is weakly lower semicontinuous. By [1, page 422,

theorem 131 K is weakly closed. Thus the set M = (x : xeK, cp(x) < c)

is bounded and weakly closed. By [1, page 425, Corollary 81, M is

weakly compact. Hence p achieves its infimum on K.I
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§8. Theorem. Let there be given two convex functionalsdefined

on the conjugate of a normal linear space E:

P(f) = sup (f(x) - X(x):, (f) = sup ff(y) - 1(y))
xCX yCY

where X and Y are subsets of E and X and 1i are

functionals on X and Y respectively. If for some cI > infcp

and c2 > inf* the c1 -level set of cp and the c2-1evel set

of * have a bounded non-void intersection, then each functional

achieves its infimum on each non-void level set of the other.

Proof. A set of the form (f : f(x) - X(x) < c), with x fixed in

E, is closed in the weak* topology. Each level set of rp, being an

intersection of such sets, is weak* closed. Similarly for *. This

proves that t and * are weak* lower semicontinuous. Now suppose that

the set of f satisfying cp(f) < cl and (f) < c2 is non-void and

bounded. This set is the same as the set of f for which

max (t(f) - cl, 4(f) - c 21 < 0, and the latter is therefore bounded.

Since c1 > infcp and c2 > inf *, there is an € > 0 such that the

set max tCP(f) - cl, 4(f) - c2 ] < - € is also bounded and non-void. By

§4 the set of f for which max tc(f) - cl, #(f) - c23 ) c is also

bounded for any c. If c3 < c1 + c and c4 < c2 + c then the set of

f for which y(f) < c3 and *(f) < c4  is bounded. This set, then, is

weak* closed and bounded, hence weak* compact. Hence cp and * achieve

their infima there.f
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Remark. In order that the functional c achieve its infimum on

E* it is sufficient that one level set of c be bounded and non-void.

We provide next some examples which illustrate how existence may

fail for extremal problems.

§9. Example. In AP with p > 1 define X = [5n  n = 1,2,...)

where 6n =n ,...,O,1,0,...). Define X on X by putting X(,n) =
n-1/q whr -1 -1
nq where q + p = 1. If f is a continuous linear functional

on 1p  then f(x) = E a x where CE q  The functional X does not

possess a best Tchebycheff approximation in jq. Indeed, for the

particular sequence

S-1/q n < N
1n nn=j 0 n > N

we get cp(f) = sup If(x) - X(x)I = sup Ian  n-1/q = -l/q. Th.
in pf *xCX n 

1-/qinf c(f) = 0. But to attain (f) = 0 we would have to have a n-
f

for all n, and then aji q . In this example, the origin does not lie

in the relative interior of the convex closure of XU - X, so that the

hypothesis of §16 below is not satisfied.

§1O. Example. In the space L1 EO,1 define the linear functional
1

g(x) = T tx(t)dt. The hyperplane tx : g(x) = 1) has no point closest
0

to the origin, for in order to minimize JIx(t)Idt while maintaining

g(x) = 1, the total area under the x-curve would have to be piled up at

the point 1. In §14 below a simple sufficient condition is given in order

that a linear manifold shall contain a point closest to the origin.
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Ill. Example. Consider a Markoff system in CEO,I] which is
n

not fundamental. For example [x2 n3. Let M denote the closed linear

manifold spanned by these functions. No point outside M has a closest

point in M, for by the Tchebycheff alternation theorem the error curve for

such an approximation would have to alternate an infinite number of times

between +€ and -e, which is not possible.

§12. Example. In 12 let X denote the Hilbert "cube," i.e., the

set of points x such that IxnI < 1/n for all n. On X define X

by X(x) = X/IW. The series is absolutely convergent because the series
n-3/ 2  n=l

E n converges. Let cp(f) = sup lf(x) - x(x)l. By taking f to be a
xcX

sequence

IlArn n < N
an= O n>N

We get C(f) = sup 1 E nxE I < E C312. Thus inf c(f) = O. But
Il x I N -n n>N f

it is not possible to achieve c(f) = 0. Indeed, if f = (al,...) then

clearly a - for some n. Take then x = - 6 to show lf(x) - X(x)l =n Fn n n

l1a - -L I > 0. As in the example of §9, the hypothesis of §16 is violated.

§13. Example. In any Banach space E of infinite dimension, let

Ixn) be a linearly independent sequence of vectors with II xn II 1 0. Put

X = [xn ) U (0). Then X is compact. Define X(x ) = A- and
n n n

X(O) = 0. Then X possesses no best Tchebycheff approximation from E*.

Indeed, for fixed N, if we put f(x n) = X(x n ) for n < N and f(x n) = 0

for n > N then f may be extended linearly to an element of E*. But

C(f) = sup jf(x) - X(x)l = II xN I. Hence inf r(f) = O. But
xcX feE*
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if t(f) O for some fo then fo = X on X, and then fo is

unbounded since fo(x xln 11) = ii xn 11-1/2 - co. As in the example of §9

the hypothesis of §16 is violated.

§14. Theorem. Let E be a normed linear space and M a weak*

closed subset of E*. Then M contains a point of minimum norm.

Proof. The sets (f " f II < ci are weak* compact by [1, page 424,

theorem 2J. Hence the norm in E* is weak* lower semicontinuous. Since

M is weak* closed, each set {feM : 11 f 11 < cl is weak* compact, and

hence ii f ii achieves its infimum.f

§15. Example. As an illustration of an extremum being achieved we

consider a problem of automatic control. There is given a system of

linear differential equations

n n
(1) x.(t) = E Ai (t) x.(t) + Z B. .(t) u.(t) + ci(t) (i = 1,... ,n)j=l j=l j  "'"

or

=Ax + Bu + C

in which A and B are nX n matrices depending continuously on te[O,1],

and x(t), u(t), and c(t) are n-vectors. It is assumed that c(t) is

continuous. The control problem consists in finding a control u(t) such

that the differential equations above, with prescribed initial and terminal

values x(O) and x(l), will have a solution x(t), and such that under

this restriction the integral
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(2) S2 2U(a) + ""+ u2(s)]i/2ds
0

will be minimized. Since we wish to permit the u. to be generalized

functions, it is more convenient to rephrase the problem after first

passing to the explicit solution of the initial value problem. To this

end, let W(t) be the matrix of fundamental solutions of (1) such that

-(0) is the identity matrix. Then the initial value problem has the

solution

n tn

xi(t) = ( (0) + F z "z: jk( S) uk(s) + ck(s)Ids)
j=l 0 k=l k

or
t

x(t) = Z(t)fx(O) + - (s)EB(s) u(s) + c(s))ds)
0

Let u.(s)ds = dv.(s). The condition that the prescribed terminal values3 3

x.(l) be achieved is that3

(3) 1 -1 (s)B(s)dv(s) = a
0

where a is a numerical n-tuple given by

-- 1

a = 'Z (1)x(l) _ (s) C(s)ds.
0

Now let 4 denote the n-fold direct sum of C[O,l]. An element of 4*

may be identified with an n-tuple (vl ... v n ) where each vi  is a

function of bounded variation on [0,1]. For v = (vv, ...IVn)e$ and

= (Yl9...,yn)e4 we set

n 1
<v,y>= E f y (s)dv (s)

j=l
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Now for i 1,...,n let Y be a point in f with components
n

Yij - .i (s)Bj(s)

k=l

Then equation (3) takes the form

<vYi) (j = ,... ,n)

From this we see that v is constrained to lie on the intersection of

n hyperplanes in 4*, whose gradients are from 4. The set of all such

v is therefore a weak* closed linear manifold.

Now let 4 be nomed as follows: ii x = sup S7x(t) . This
o<t<l J.

norm on 4 induces a norm on 4', and we shall show that for a linear

functional v of the form

1
<v,x> = E j xi(s) ui(s)ds

iO

the norm I1 v I is precisely the integral (2).

In fact, by the Cauchy-Schwartz inequality for n-tuples, we have

lvII sup <v,x>
xe,I 11 

1

U x) ds
- =I x I--i:

1

< ,[/Eu(s) ds
0



On the other hand, we can take as a particular choice for x the

function of norm 1 whose components are

x.(s) =ui(s)/U2(8)

Then V <vx i
0

If the scope of the problem is enlarged so that the controls are

differentials of functions of bounded variation then the existence of

optimal controls is guaranteed by the simple theorem of §14.

In the next theorems we are concerned with an abstract problem of

Tchebycheff approximation. Givena set X in a linear topological space

E and a bounded functional X on X we seek an element feE* for

which the expression

tCf) = sup If(x) - X(x)I
xeX

is an absolute minimum. If such an f exists, it is termed a "best

Tchebycheff approximation to X." This problem encompasses the familiar

problems of approximating functions by linear families of other functions.

This will be mentioned again later. We begin with an existence theorem.

The notation [Xl denotes the linear subspace spanned by a set X. The

convex hull of X, denoted by 4(X) is the set of all finite linear

combinations E Qixi where x.eX, Q, >- 0, E 9, = 1. The convex

closure of X is the closure of the convex hull, and is denoted by

5(X). We mean by the relative interior of X its interior relative to

the least linear manifold containing X.
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§16. Existence Theorem for Tchebycheff Approximation. Let E

be a Banach space and X a subset of E. In order that each

bounded function on X possess a best Tchebycheff approximation

in E* it is sufficient that, in the relative topology of EXJ,

0 be interior to the convex closure of XU- X.

Proof. The space EXJ is a normed linear space (possibly incomplete)

and EXJ* is a Banach space. We begin by showing that the functional

cp defined on EXJ* by the equation cp(f) = sup If(x) - X(x)l achieves
xeX

its infimum. By the remark of §8, it suffices to prove that each level

set of ep is bounded. Suppose cp(f) < c. Then [f(x) - ~x)I < c for

all xeX. Thus If(x)I < b for an appropriate b. This inequality

is valid also for xe - X. By linearity the inequality remains true for

xe t(XU- X), and by continuity for xe (XU- X). Thus f is bounded

by b on a sphere, and his makes f bounded by a constant independent

of f. Thus cp achieves its infimum on EX]*, say at fo. By the

Hahn-Banach theorem, f may be extended to an element of E* without

changing c(f0 ). On the other hand, any element of E* becomes an

element of EXJ* when restricted to X. Hence f (extended) solves0

the minimization problem.*

§17. Characterization Theorem. Let X be a bounded subset of

a locally convex space E, and X a functional on X which

is bounded below. In order that a point f cE* minimize the0

expression p(f) = sup (f(x) - X(x)3 it is necessary and sufficient
xeX
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that o f xl , where Xe = {xCX : f (x) - X(x) > C(f -

6>0 0 0

Proof. If 045(x) then by the separation theorem, there exists an

heE* such that inf h(x) 0 6 > 0. Let c be a positive number such
ixe(X )

that - ch(x) < 7e for all xeX. Then c(f0 -ch) < p(fo) . Indeed, for

xeX6  we have f0 (x) - ch(x) - X(x) < tp(fo) - c6, and for xeX - XC we

have f (x) - ch(x) - X(x) < t(f) - e - ch(x) < cp(f) - e/2.

000

For the converse, suppose that f does not minimize cp. Then there

is an heE* and an e>0 such that cp(f - h) + 2e < cp(f 0 ). Let y be a

point of X .  Then cp(f) fo(y) - X(x) + e, whence f0 (y) - h(y) - X(y)

:9(fo - h) < c(f) - 2e < f0(y) - X(x) - e. Thus - h(y) < - e, and 0

cannot lie in the convex closure of X. 1

The analogous theorem for Tchebycheff approximation, in the real or

complex case may be stated as follows:

§18. Theorem. Let X be a bounded subset of a locally convex

space E over the real or complex field, and X a bounded

functional on X. A necessary and sufficient condition that an

element feE* shall minimize the expression cp(f) = sup Jf(x) - X(x)l
xeX

is that o n X , , where X = (77-.(x) : Ir(x)i >tp(f) - e) and
C>O

r = f - X.

§19, Lemma. Let A nI be a decreasing sequence of compact sets

in a locally convex space. Then An = nlA n .

Proof. Put A = A n . Since nflA n is a closed convex set containing A,
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it contains *A also.

For the reverse inclusion, note first that bA is the intersection

of all closed half spaces containing A. It will therefore suffice to

prove that if a half space tx : f(x) < c) contains A then it contains

nlA n . Given e, there corresponds an m such that Am C (x : f(x) < c + C).

Indeed in the contrary case, we could find a sequence xn  with the

property x eA n fx : f(x) > c + e), and any cluster point x of this
n n

sequence would lie in A but not in fx : f(x) < c). Thus the half space

[x : f(x) < c + e) contains Am, hence IAm, and finally f An. Since

this is true for every e, the proof is complete. This argument by R. T.

Rockafellar replaces our earlier and clumsy proof. 1

20. Theorem. Let X be a non-void compact set in a (possibly

complex) locally convex space E, and X a continuous functional

on X. In order that an element feE* shall minimize the

expression y(f) = sup If(x) - (x)I it is necessary and sufficient
xeX

that 0 lie in the convex closure of the set [r.x : xeX,Ir(x)l

=p(f)), where r = f -X.

Proof, 1. By §18, the necessary and sufficient condition on f is that

Oefl n X where X = [r).x :r(x) I + e > p(f)]. Since X is contin-
6>0-

uous, X is compact. By the lemma, fl X = fiX .  But nx, = X0. 1

Proof 2. A direct proof using the separation theorem is also possible.

Assume first that 0EX o . Then c(f) > 0. By the separation theorem,

there exists heE* such that a E inf R[h(x)] > O. Let Z = .(:xeX
x, (xo)
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Ir(x) I > 1 tp(f) and R[r'3 h(x)] > 1 a) Since Z is open in X, the

set Y = X - Z is compact. Consequently the supremum of Ir(y) l is

attained on Y, say at yo. If p a jr(yo)1= y(f) then r(yo).yoeX

and y oZ, contradicting the choice of y. Hence p < cp(f). Now01

let =1 + maxh(x)l and let 0 < 0 < a/02. If xeZ then

12 12 12 22 12
Ir(x) - Qh(x) = jr(x) + hx - 2Q h(x> ;- ] < jr(x>

9M < [((f)] 2 
- ct. If 0 < Q < P-1 Ep(f) - p] then for xeY,

Jr(x) - Qh(x) j ! Ir(x) j + @jh(x) I < p + Q@ < cp(f). Consequently for

some G, c(f - h) < (f).

For the converse, assume that p(f - h) < cp(f). Then I(f - h)(x)- X(x)I <

if(x) - X(x)1 for xcS = (xeX : jr(x)I = cp(f)). Hence (f - h)(x) - X(x)12

Ir(x) 12 + Jh(x) 12 - 2REh(x).r(x) ] < jr(x) 12 , and a[h(x).r(x)] > lh(x)12.2

Since h(x) does not vanish on S and since S is compact, R[h(x).r-]

is bounded away from 0 on S, and consequently, 046X0 . This Theorem

was given in the real case in a research announcement, Bulletin of the Am.

Math. Soc. [68, (1962), 449-450.I

§21. Definition. The cone of a set Y consists of the origin

together with all the positive multiples of points in Y. Thus

in particular the cone of the void set is (0]. The cone of Y

is denoted by e(Y).

§22, Lemma. In a linear topological space the cone of a closed

and bounded set not containing 0 is closed.
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Proof. Let Y be such a set and E the space. If $(Y) is not

closed then there is a point ueE - e(Y) such that every neighborhood

of u meets O(Y). Then to each neighborhood a of 0 there will

correspond u e (u+a) n if(Y). We may write u = X y where X > 0a a aa a-

and y eY. By passing to a subnet we may suppose that X converges,

possibly to +c. In the latter case, yC -4 0 contradicting the

hypothesis O4Y. If X a- 0 then u O- 0 because I is bounded. Since

u X 0 this possibility is ruled out also. Consequently, X a- X with

0 < X < m. Hence y. - u/X. Since Y is closed u/XeY, contradicting

u IY) .

§23. Lemma. Let Y be a closed and bounded convex set having

a closed cone in a locally convex space, and let X be a compact

convex set disjoint from the cone of Y. Then there exists a

continuous linear functional f such that

sup f(x) < 0 < inf f(y)
xeX yCY

Proof. By the ordinary separation theorem, there exists a continuous

linear functional h such that inf h(y) > 0. Since 4(Y) is closed,
yeY

there exists a continuous linear functional g such that

sup g(x) < 0 < inf g(y)
xcX - ye(y)

Now let 0 < X < inf E-g(&)] sup 1 + Ih(x) I, and define f = g + Xh.
&eX xeX

We have then for xeX, f(x) = g(x) + Xh(x) < g(x) + X[l + Ih(x) I] < g(x) +

inf [-g( )]< 0. Since X is compact and f is continuous, sup f(x) < 0.
ZCX xeX
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On the'other hand, inf f(y) inf Eg(y) + )Xh(y)3 > inf Xh(y) > 0.1
yeY yeY yeY

§24, Existence Theorem. Let X and Y be subsets of a

normed linear space E. Let X and 11 be bounded functionals

on X and Y respectively. If, in the relative topology of

EXUYJ, 0 is interior to the convex closure of XUY then the

functional c(f) = sup Ef(x) - X(x)] achieves its
xeX

infimum on the set K = [feE* : sup Ef(y) - <(y)3 < 0).
yeY

Proof. We proceed as in §16. For any constant c the set S of

feE[XJY]* for which sup Ef(y) - ji(y)] < 0 and sup [f(x) - X(x)3 < c
yeY xeX

is bounded. Indeed, if feS then because of the boundedness of X and

i, f(z) < k for some k and all zeXUY. This inequality remains true

for ze6(XUY) and hence on a sphere about 0. Thus S is bounded. By

familiar arguments, S is compact in the weak* topology of EXUY*,

and cp is weak* lower semicontinuous. An element of EXUYJ* which

minimizes cp may be extended by the Hahn-Banach theorem to E*.I

Remark. It is only necessary to assume that for some X C X and0

Y 0CY, I is bounded on Yo, X is bounded on Xo, and 0 is in the

interior of J(X UY ) relative to EXUYJ.

§25. Characterization Theorem for Convex Programming. Let E be

a locally convex space, X a bounded subset of E, and Y a

compact subset of E with C4 (Y). Let X be a functional on

X which is bounded below. Let x be a lower semicontinuous

functional on Y. Put K = ffeE* f(y) < jL(y) for all yeY)
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and c(f) = sup (f(x) - X(x) : xeX). In order that a point

f of K minimize cp on K it is necessary and sufficient

that for each e > 0, 1j(-Yo )n (x,) s where Yo = (ye!Y

f0(y) = 1(y)] and X= [xcX : f(x) -(x) > t(f) - e).

Proof. (Sufficiency) Suppose that f does not minimize cp on K. Then

for some heE*, f - heK and c(fo - h) < c(fo) . Select c > 0 such that

(fo0 - h) < (fo) 0 2e. For yeY0 we have (fo - h)(y) < (y),

00
whence h(y) > O. This inequality persists if y ranges over (Yo) . For

xeX. we have (f - h)(x) - X(x) < e(f - h) < t(f) - 2e < f0(X) - X(x) - C,

whence h(x) > e. This inequality persists if x ranges over §(X). Thus

the sets eF(-Y ) and (XC are disjoint.

(Necessity) Suppose that the sets at(-Y ) and E(X ) are disjoint

for some e > 0. By §23, there exists an heE* and constants a and

such that

h(y) < 2a < 0 < P < h(x)

for all ye 6(-oU[O3) and all xef(X). Since XUY is bounded there

exists a number k such that lh(x) l < k for all xeXUY. Now let

Y* = (yeY : h(y) > - a). Y* is then an open set in Y containing Yo"

Since Y - Y* is compact and contains no points of Y o the number

= max (f (y) - t(y))
ycY-Y*

is negative. Select a positive number t such that 2tk < max le, - y).

We are going to show that f - th is a point of K yielding a lower

0i
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value of than 9(f). For yeY* we have (fo - th)(y) - '(y) <

- th(y) < 0. For yeY~Y" we have (f - th)(y) - i±(y) < y + tk < 1 < 0.
0 E

Thus f - theK. For xeX we have (f - th)(x) - %(x) < t(fo) - th(x) <
0 9 0 0

( -(f tP. For xeX-X we have (f - th)(x) - X(x) < cp(f) - 9 - th(x) <

1
cp(f) - c + tk < - e. Hence cp(f - th) < e(fo)J

Remark. The hypothesis O (Y) may be replaced by the hypothesis

that r(Y) is closed.

§26, Corollary. If, in the above theorem, E is complete, X

is compact, and X is lower semicontinuous, then the necessary

and sufficient condition on f is that ; (-Yo)fl(X o ) shall

be non-void.

Proof. From the theorem, the necessary and sufficient condition on f
0

is that for each e > 0 there exist a point v in A(Yo)nF(Xe).
Since t(X ) is compact [2, page 81, corollary], the set (v1 C > 0

has a point of accumulation, v. Clearly ve n 1X . But by §19,

§27, Example. In the linear space C[O,lJ we introduce the

norm II x II = sup (t + 1)Ix(t)l, which is topologically equivalent to
t

the usual norm. Consider the problem of minimizing I f fi in the

conjugate space under the constraint f(I) = 1 where I denotes the

function identically 1 on [0,1). The theorem of f25 may be applied

to prove that a solution is given by f0(x) = x(l). To this end, let

X denote the unit sphere in C and let Y = (I]. We set -(*I) = ti
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and X(x) = 0. Then K = (f f(I) = 1) and c(f) = il f II. The set

Y is [±tI and the set X¢ is txeC x(l) > 1- c. Since
0

IcY fny the condition of the theorem is met, and f is a solution.
0 6' 0

§28, Theorem. Let E and E be Banach spaces. Let X
1 2

be a subset of E1 such that Ocinti(XU - X). Let A be a

bounded map of X into EP. Then A has a best Tchebycheff

approximation by an element of B(E1 ,E).

Proof. Define the T-topology in B(E1 ,E*) by saying that L
2 a

L iff <y,Lax > - <y,Lx> for all xeE1 and all yeE2. We are going to

show that the function tp(L) = sup IjLx - Ax II achieves its infimum in
x¢X

B(E1 ,E*). It will suffice-to show that cp is T-lower semicontinuous

and that each set Mc = [LeB(E1 ,E ) : rp(L) < cl is T-compact. That Mc

is T-closed is quite obvious, and thus r is T-lower semicontinuous.

Now M is norm bounded because if LeM then 11 Lx - Ax < c for

all xeX whence II Lx I < c' for all xeX. This inequality remains

true for xe(XJ - X) and thus in a sphere about 0. Thus 11 L 11 is

bounded by a number depending only on c. Since M is norm boundedc

and T-closed, we may apply Corollary 3 of [2, chapter 4, page 65] to

conclude that M is T-compact.1C 1

§29. Lemma. Let E and F denote Banach spaces. Let X be

compact in E and Y compact in F. In order that there exist

a bounded linear transformation A : F - E* such that <x,Ay) > 0

for all xeX and yeY, it is necessary and sufficient that the
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convex closures of X and Y be disjoint from 0.

Proof. If <x,Ay> > 0 for all xeX and yeY then by compactness,

x,Ay> > e for some c > 0. This remains true for xe X and

yu Y. Consequently OkX and OkY.

Conversely, suppose OJX and OZY. By the separation theorem,

there exists ueE* and veF* such that <x,u> > 0 for all xeX and

<y,v) > 0 for all yeY. Define A : F - E* by putting <x,Ay) = (u,x><v,y>

for arbitrary xeE and yeF. Clearly A is a bounded linear transformation

satisfying <x,Ay> > 0 for xcX and yeY.1

§30, Theorem. Let X be a compact set in a Banach space E

and § a continuous map of E into Hilbert space. In order

that a bounded linear operator A from E into the Hilbert

space shall minimize the expression A(A) = sup II Ax - cpx II it
xeX

is necessary and sufficient that 0 lie in the convex closure

of X0 =xeX I Ax - cpx II = A(A)) or of [Ax - cpx : XeX 0 .

Proof. Put Rx = Ax - cpx. If A(A) is not a minimum then for some linear

operator B, A(A-B) < A(A). Thus for xeXo, II Ax - CPx - Bx II2  Ii Ax - C x

whence - 2(Rx,Bx) + II Bx 112 < 0 and (Rx,Bx) > 0. By the lemma, 0 is

disjoint from the convex closures of the point sets [Rx : xeX o0 and Xo.

For the converse, suppose that 0 is disjoint from the convex

closures of the sets (mc : xeX o and X0 . By the lemma, there exists a

linear operator B such that (Rx,Bx) > 0 for all xeX 0 . Since Xo is

compact, the number el = min(Rx,Bx) is positive. Put e2 = max ii Bx II.
xX x4X0
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Define - = txeX : (Bx, 21) ' 2 Rx >*=> 4(A)). is open in X

and contains Xo. Consequently X ~ is a compact set containing no

points of X . Consequently 1I Rx II has a maximum, e, on X - X1  such
2 A(A)-e

that e < A(A). Let 02 and 0<X< 2 We are
2

going to prove A(A - XB) < A(A). For xe 1  we have II(A - XB)x - yx 112=11~~ ~~~ Rx12+X1lx1 1
S 2 2(RxBx) + x2 Ill 2 < - + X2C2 < 11Rx 112 + X62(-

2. X~e I~x 2

For xeX-X1  we have I(A - XB)x - cx 1I < iIRxli + XIIBx II < e + Xe2 < 2

e + [A(A) - el < A(A).I

In the next theorem we consider the problem of non-linear Tchebycheff

approximation in an abstract setting. Let E be a reflexive Banach space

over the real field, and let T be a compactum. Let f be a map of

E X T to the field, continuous in x and t separately. We assume that

f has a Frechet derivative V with respect to the first variable x,

that ff'(x,t) :teT} is equicontinuous and that f' is continuous in t.

The points xeE for which the expression

A(x) = sup If(x,t)l

teT

is (locally) a minimum are partially characterized by the following

theorem. Set T = (teT : If(x,t)l = A(x)).
x

§31, Theorem. If a point xCE is a local minimum point of A

then the origin of E* lies in the convex closure of the set

(f(x,t)f'(xt) : teTx].

Proof. Suppose that 0 is not in the convex closure of the cited set.

By the separation theorem there exists zcE** = E such that

f(x,t)<z,f'(x,t))> 0 for all teT x. With no loss of generality we may
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assume that I zII = 1. Since Tx  is compact, there is an , > 0

less than all the numbers f(x,t)<z,f'(x,t)> for teTx. By the

continuity properties of f and f' we may find a 6 > 0 such that

for all II 11< 6, the following two conditions are satisfied:

Ilf'(x + , t) - f'(xt) II < le (teT)

2f(x,t)<z,f'(x + ,t)> > . (tT x )

Now let T1  [teT : If(x,t)l > iA(x) and f(x,t)<z,f'(x,t)> > e]. Clearly
2

T1  is an open set containing Tx. Thus T 2 = T - T1  is a compact set

containing no points of T. Consequently, the number p = sup If(x,t)I is
teT

less than A(x). Select X in accordance with the inequalities

(1) 0<X<6

(2) XQ< A(x) - p where Q 1 + sup If'(x,t)I
2 2 teT() XQ e€.

We are going to prove that A(x - Xz) < A(x). For teT1  we have

If(x - Xz,t)12  If(x,t) - X<z,f'(x - GXz,t)>12 = If(x,t)12 -

2Xf(x,t)<z,f'(x - QXz,t)) + X2 1<z,f'(x - QXz,t)>12 < A2(x) - A, +

X2Q 2 < A2 (x) + XE-2e + c]. On the other hand, for teT 2  we have

If(x - xz,t)I < If(xt)I + kl(z,f'(x - QXz,t))l <_p + XQ< p + A(x) -p =

Remark. For this theorem the function f may be defined on S X T

(where S is an open subset of E) instead of on E X T.
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